Miao Yu to develop cost-effective sensor for measuring lake health

Miao Yu to develop cost-effective sensor for measuring lake health

Miao Yu to develop cost-effective sensor for measuring lake health

Lakes play an important role in regulating the greenhouse gases that are important to Earth’s climate. However, human-induced stress and disturbance, exacerbated by a changing climate, have put lakes under an increasing amount of stress. To understand how lakes are changing, it is critical to monitor them, especially those that are ice covered in winter months. It is difficult to make such measurements year-round because of the high cost of installing and maintaining monitoring instruments.

Professor Miao Yu (ME/ISR) is the principal investigator for Light in the Dark: Fiber Optic Sensing of Climate-Critical Carbon Cycle Components at Water/Ice-Air Interfaces, a new three-year, $500K NSF collaborative research project to advance water quality monitoring. Yu will develop a sensor that can monitor multiple water quality parameters throughout the year.

A miniature, cost-effective sensor will provide an improved understanding of the carbon footprint of lake systems and will better inform lake management decisions. The fiber-optic, multiparameter sensor will be suitable for long-term deployment, including under lake ice. The sensors will be able to simultaneously measure parameters such as carbon dioxide, methane, temperature, pH, salinity, and dissolved oxygen. These are the significant components of measuring a lake’s health, its influence on climate change, and the impacts of human activity on the lake.

Yu also is the University of Maryland principal investigator for a related, recently awarded four-institution National Science Foundation grant, BLUES: Boundary Layer Under-Ice Environmental Sensing. The three-year, $689K collaborative research project will start in October. The researchers will develop technology to accurately measure ice accretion and melt rates at the ice/water interface, then use that information to generate better models of under-ice water circulation and mixing. | Read the story here |

Related Articles:
Adjustable Drug Release Marks New Milestone in Ingestible Capsule Research
Adjustable Drug Release Marks New Milestone in Ingestible Capsule Research
Miao Yu receives NSF funding to develop ice-measuring sensors
MSAL’s work on serotonin characterization and detection results in two journal covers
Biofilm-fighting catheter insert research named 'featured article' in IEEE TBME
Biofilm-fighting system for urinary catheters proves effective in simulated environment
Rapidly evolving ‘smart marble’ sensors hold promise for monitoring pharmaceutical industry bioreactors and beyond
Ingestible device research advances, enters new phase
Chapin, Bowen win in Bioscience Day poster session
Understanding Heat Where It Matters Most

August 28, 2023


Prev   Next

Current Headlines

UMD Breakthrough Named Amongst Physics World’s Top 10 of the Year

Two Clark School Faculty Elected to National Academy of Inventors

Small Business Connections Help Meet Researcher Needs

Prof. Michael Pecht Explores Energy Storage Collaboration at Saudi University

Professor Bongtae Han Delivers Invited Talk at Korean Semiconductor Event

Vishkin Receives 2026 IEEE Computer Society Charles Babbage Award

Two Students Take Top Awards at AIAA YPSE Conference

Chemical Engineering Student Wins Third Place Award in AIChE’s Student Poster Competition

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar