UMD Autonomous Navigation Research Featured in Tech Explore

UMD Autonomous Navigation Research Featured in Tech Explore

UMD Autonomous Navigation Research Featured in Tech Explore

University of Maryland research into using machine learning to predict human driver behavior was featured in Tech Explore. The article, “B-GAP: A simulation method for training autonomous vehicles to navigate complex urban scenes,” highlighted work that was recently published in IEEE Robotics and Automation Letters.

The researchers, headed by Distinguished University Professor Dinesh Manocha (Department of Electrical and Computer Engineering and Department of Computer Science), include computer science Ph.D. students Angelos Mavrogiannis and Rohan Chandra.

The team recently developed a new technique that could improve the effectiveness of current simulators used to train models for self-driving vehicle navigation. Their technique builds previous research focusing on autonomous vehicle navigation and behavior classification.

"While there is currently a lot of interest in autonomous navigation for self-driving cars, current AI methods used for navigation do not take into account the behavior of human drivers or other autonomous vehicles on the road," Manocha told TechXplore. "The goals of our work are to develop robust technologies that can detect and classify the behaviors of other road agents (e.g., vehicles, buses, trucks, bicycles, pedestrians) and use these behaviors to guide the driving trajectories of autonomous vehicles."

Beyond the complexities of autonomous navigation in its own right, are the additional complexities of autonomous navigation in a dense and constantly changing environment such as high-population, urban environments. Furthermore, it is a major challenge to develop safe autonomous driving technologies that can adapt to the driving patterns or behaviors of human drivers.

As part of their work, the team classified human-driver behaviors based on conservative versus aggressive metric, and then using novel computational methods, the team developed a model, dubbed CMetric which analyzes the behaviors of other drivers in dense, mixed traffic scenarios.

With the addition of more vehicles—and more importantly, more drivers with potentially unpredictable behavior—the need for more robust models for the future success of autonomous vehicles in these environments is critical.

Additional information on the team’s work can be found here.

Angelos Mavrogiannis, Rohan Chandra, Dinesh Manocha, "B-GAP: Behavior-Rich Simulation and Navigation for Autonomous Driving", Robotics and Automation Letters IEEE, vol. 7, no. 2, pp. 4718-4725, 2022.

Related Articles:
MRC and MAGE Earn ARM Institute Endorsement
UMD Dedicates IDEA Factory
UMD Researchers Eye Advances in Autonomy
Manocha Receives 2022 Verisk AI Faculty Research Award
Extending Quadcopter Flight Time—By Adding Wings
Discoveries from NASA's Parker Solar Probe published in Nature
Advancing Healthcare through Robotics and Machine Learning
Special Delivery
Helping robots remember
Machine Learning's Translational Medicine

April 13, 2022

Prev   Next

Current Headlines

‘Flash Heating’ Technology Preserves Food at No Nutritional Cost

Replace Glue with Electricity; Obtain the Same Results

LEGOLAS participates at U.S. Senate Robotics Showcase on Capitol Hill

Key Bridge: What Comes Next?

CEEE Co-Director Vikrant Aute Honored With Faculty Award

Maryland Academy of Sciences Names Hannah Zierden Outstanding Young Engineer

Speedy, Secure, Sustainable—That’s the Future of Telecom

University of Maryland Has Strong Presence at ICRA 2024

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar