NSF Grant for Nanofabrication for Energy Apps

NSF Grant for Nanofabrication for Energy Apps

NSF Grant for Nanofabrication for Energy Apps

Diagram for the DNA probe directed assembly of TMV1cys nanotemplates onto a readily addressable site. L and R represent left and right electrodes. Inserted picture shows an actual chip.
Diagram for the DNA probe directed assembly of TMV1cys nanotemplates onto a readily addressable site. L and R represent left and right electrodes. Inserted picture shows an actual chip.

Herbert Rabin Distinguished Professor Reza Ghodssi (ECE/ISR/UMERC/NanoCenter) has received a new three-year grant from the National Science Foundation worth $401,712 for research on novel, biological nanofabrication processes for the development of small-scale energy storage devices utilizing the tobacco mosaic virus (TMV). Ghodssi is the principal investigator (PI) for the research project, titled "Nanofabrication Using Viral Biotemplates for MicroElectroMechanical Systems (MEMS) Applications." Professor James Culver from the Center of Biosystems Research at the University of Maryland Biotechnology Institute is Co-PI.

The objective of the research is to make use of the self-assembly and metal-binding properties of a biological nanostructure, the TMV, in the development of novel functional materials and fabrication processes for energy microsystems applications. The TMV is a high aspect ratio cylindrical plant virus that can be genetically engineered to include amino acids with enhanced metal-binding properties. These genetic modifications facilitate electroless plating of the molecules as well as self-assembly onto various substrates. The developed processes will be incorporated in the fabrication of new, nanostructured small-scale energy storage devices.

More information about the research can be found at the NSF website:

http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0927693

Additional information:

JMM Paper: http://www.ece.umd.edu/~ghodssi/ghodssi-pdf/Gerasopoulos_JMM_October2008.pdf

Nano Letters: http://pubs.acs.org/doi/pdf/10.1021/nl051254r

Related Articles:
The Future of Small
Cumings Leads EFRC Nanowire Team
NSF Grant for Battery Research
UMERC/Nanocenter Team Named "Energy Frontier" Center
NanoCenter Improves Energy Storage Options
Ion Storage Systems names new CEO
Mtech Ventures company spotlight: Alchemity
Former MEI2 energy seed grant discusses 3D printing of advanced ceramics
$1.9M NSF FuSe2 award - Cheng Gong’s 7th NSF research grant in the past two years
Maryland Engineering and Partners Win $26M to Develop Better HVACR Systems and Fight Climate Change

July 27, 2009


Prev   Next

Current Headlines

Nature Names Sustainable Cooling a Key Technology to Watch in 2025

RAMS 2025 Reliability Engineering Program Alumni Reception

Celebrating Black History Month

The Clark School Celebrates the Legacy and Impact of Black Engineers

Clark School LGBTQ+ liaison Ambi Narula awarded Luke S. Jensen Endowed Scholarship

Ulukus to Receive IEEE CTTC Award

In Memoriam: Reinhard Radermacher

Two Maryland Engineers Bestowed with Presidential Honors for Excellence in STEM

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar