UMD Microrobotic Work Featured in <i>IEEE Spectrum</i>

UMD Microrobotic Work Featured in IEEE Spectrum

UMD Microrobotic Work Featured in IEEE Spectrum

One of Bergbreiter and St. Pierre's tiny pronking robots. Photo source: IEEE Spectrum
One of Bergbreiter and St. Pierre's tiny pronking robots.
Photo source: IEEE Spectrum

IEEE Spectrum, the Institute of Electrical and Electronics Engineers' (IEEE) flagship magazine, recently spotlighted Associate Professor Sarah Bergbreiter (ME/ISR) and graduate student Ryan St. Pierre's work in microrobotics.

The article, "This Is the Tiniest Little Quadruped Robot We've Ever Seen," was featured in their robotics blog and highlighted work the two had presented "on the gait characteristics of magnetically actuated legged robots weighing less than 2 grams" at IEEE's International Conference on Robotics and Automation (ICRA) held last month in Stockholm, Sweden.

The tiny robots, which currently measure at 20mm in length and have the potential to get much smaller, are 3-D printed, and then have magnetically actuated motors added to them. According to the article, "the robot is magnetically actuated, using an externally generated magnetic field. Each of the robot’s four hips has a 2-mm neodymium cube magnet embedded into it, and when you rotate a big magnet in close proximity to the robot, the magnetic field causes those little magnets to rotate as well, spinning the robot’s legs. By changing the dipole orientation of the leg magnets in different combinations, you can cause the robot to move with different gaits, including trotting, waddling, bounding and pronking."

(Video source: http://spectrum.ieee.org/automaton/robotics/robotics-hardware/tiniest-little-quadruped-robot)

Interestingly, the researchers discovered that the pronking motion—a motion where all four limbs lift off the ground simultaneously—was the best gait for moving over flat and mildly uneven terrain. On flat ground, the little robots were able to cover approximately four times their body length per second at this gait. However, as the going got tougher, other gaits outperformed pronking.

Bergbreiter is Director of the Maryland Robotics Center, and holds a joint appointment with both the University of Maryland's Department of Mechanical Engineering and the Institute for Systems Research.

St. Pierre is a third year Ph.D. student in Bergbreiter’s Maryland Microrobotics Laboratory and focuses on locomotion at sub-gram scales and understanding the forces and dynamics involved in building more efficient and effective small-scale robots.

Related Articles:
MRC and MAGE Earn ARM Institute Endorsement
NASA Selects Bergbreiter Robotics Project for Development
Passing the Torch: Maryland Robotics Center’s Next Chapter
New Research Helps Robots Grasp Situational Context
Tuna-Inspired Mechanical Fin Could Boost Underwater Drone Power
Developing Efficient Systems for Deep Sea Exploration
Huertas Cerdeira Receives NSF CAREER Award
UROC Spearheads Medical Delivery Pilot Program
Inspired by Nature, Researchers Improve System Movement
LEGOLAS participates at U.S. Senate Robotics Showcase on Capitol Hill

June 6, 2016


Prev   Next

Current Headlines

Two Clark School Faculty Elected to National Academy of Inventors

Small Business Connections Help Meet Researcher Needs

Prof. Michael Pecht Explores Energy Storage Collaboration at Saudi University

Professor Bongtae Han Delivers Invited Talk at Korean Semiconductor Event

Vishkin Receives 2026 IEEE Computer Society Charles Babbage Award

Two Students Take Top Awards at AIAA YPSE Conference

Chemical Engineering Student Wins Third Place Award in AIChE’s Student Poster Competition

UMD Engineering & HII Partner to Accelerate Defense Technologies

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar