UMD Microrobotic Work Featured in <i>IEEE Spectrum</i>

UMD Microrobotic Work Featured in IEEE Spectrum

UMD Microrobotic Work Featured in IEEE Spectrum

One of Bergbreiter and St. Pierre's tiny pronking robots. Photo source: IEEE Spectrum
One of Bergbreiter and St. Pierre's tiny pronking robots.
Photo source: IEEE Spectrum

IEEE Spectrum, the Institute of Electrical and Electronics Engineers' (IEEE) flagship magazine, recently spotlighted Associate Professor Sarah Bergbreiter (ME/ISR) and graduate student Ryan St. Pierre's work in microrobotics.

The article, "This Is the Tiniest Little Quadruped Robot We've Ever Seen," was featured in their robotics blog and highlighted work the two had presented "on the gait characteristics of magnetically actuated legged robots weighing less than 2 grams" at IEEE's International Conference on Robotics and Automation (ICRA) held last month in Stockholm, Sweden.

The tiny robots, which currently measure at 20mm in length and have the potential to get much smaller, are 3-D printed, and then have magnetically actuated motors added to them. According to the article, "the robot is magnetically actuated, using an externally generated magnetic field. Each of the robot’s four hips has a 2-mm neodymium cube magnet embedded into it, and when you rotate a big magnet in close proximity to the robot, the magnetic field causes those little magnets to rotate as well, spinning the robot’s legs. By changing the dipole orientation of the leg magnets in different combinations, you can cause the robot to move with different gaits, including trotting, waddling, bounding and pronking."

(Video source: http://spectrum.ieee.org/automaton/robotics/robotics-hardware/tiniest-little-quadruped-robot)

Interestingly, the researchers discovered that the pronking motion—a motion where all four limbs lift off the ground simultaneously—was the best gait for moving over flat and mildly uneven terrain. On flat ground, the little robots were able to cover approximately four times their body length per second at this gait. However, as the going got tougher, other gaits outperformed pronking.

Bergbreiter is Director of the Maryland Robotics Center, and holds a joint appointment with both the University of Maryland's Department of Mechanical Engineering and the Institute for Systems Research.

St. Pierre is a third year Ph.D. student in Bergbreiter’s Maryland Microrobotics Laboratory and focuses on locomotion at sub-gram scales and understanding the forces and dynamics involved in building more efficient and effective small-scale robots.

Related Articles:
MRC and MAGE Earn ARM Institute Endorsement
NASA Selects Bergbreiter Robotics Project for Development
Diving Deeper into Competition, and Recruitment
UMD-led Team Selected for DARPA Triage Challenge
UMD Student Team Lauded for Award-Winning Drone
Yu Named Elkins Professor
An Internship with Impact
Miao Yu receives NSF funding to develop ice-measuring sensors
CareDx Acquires UMD-linked Transplant Tech Firm
Modi Briefed on UMD-led Aquaculture Research

June 6, 2016


Prev   Next

Current Headlines

JC Zhao Named Dean of University of Connecticut College of Engineering

Celebrating Asian, Pacific Islander, and Desi American Engineers

Four BIOE Terps Awarded NSF Graduate Research Fellowships

Celebrating Asian Pacific Islander Desi American Heritage Month: Karenna Buco

UMD Student Awarded Wings Foundation Scholarship

Celebrating Asian Pacific Islander Desi American Heritage Month

Dean's Circle Spotlight: Investing in Ideas, and Access

Seven Current and Former Maryland MSE Students to Attend 73rd Lindau Nobel Laureate Meeting

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar