Kofinas Awarded Patent for Flexible Batteries

Kofinas Awarded Patent for Flexible Batteries

Kofinas Awarded Patent for Flexible Batteries

Dr. Peter Kofinas
Dr. Peter Kofinas

Year after year, hundreds of product and medical device fires attributed to batteries present risks for injury or even loss of life.

That is because batteries most commonly used today in everything from electric toothbrushes to commercial aircraft are made primarily of a liquid electrolyte and containment layers. These containment layers play a critical role because the electrolyte itself is both toxic and corrosive when exposed to air. But, these containment layers add weight, cost, and mass.

Recognizing these challenges, Fischell Department of Bioengineering (BioE) Professor and Associate Dean Peter Kofinas and Department of Chemical and Biomolecular Engineering (ChBE) alumnus Ayan Ghosh (Ph.D., ChBE ’09) set out a few years ago to develop a polymer solid electrolyte that would allow engineers to create safer batteries. Because the electrolyte itself is a polymer film, batteries featuring this novel conductor do not require the use of bulky containers. This means that batteries made of this flexible solid material are lighter and smaller – which is critical when designing devices as tiny as today’s pill-sized cameras used for medical imaging.

Perhaps most importantly, the polymer film produces enough conductivity for use in small commercial products and medical devices such as pacemakers, insulin pumps, and cardiac defibrillators – but without the risk of short circuiting and fires.

Last month, Kofinas was awarded U.S. patent 9,252,456 B2 for the solid battery electrolyte, along with Ghosh. Today, Kofinas works with alumnus Arthur Von Cresce (Ph.D., MSE ’07), who is now a PI at the U.S.  Army Research Laboratory,  and students from Bioengineering, Chemical and Biomolecular Engineering, and Materials Science and Engineering to pursue the next generation in solid, flexible batteries in hopes that the technology could be used to reduce the risk of fires in electronics, automobiles, and airplanes.

Aaron Fisher (Ph.D., ChBE ’12), Ph.D. candidate Matthew Widstrom (MSE), Dr. Kang Xu (U.S. Army Research Laboratory fellow), BioE alum Mian Khalid (B.S. ’15), and undergraduates Metecan Erdi (BioE) and Brian Heligman (MSE) have also contributed to the project.

Related Articles:
What’s Next for Next-Gen Batteries?
'Super Electrolyte' Capable of Operating in Extreme Temperatures, From the Arctic Tundra to the African Savannah
The Battery Revolution
Reversible Chemistry Clears Path for Safer Batteries
UMD Engineers Discover Root Cause of Solid-State Battery Failure
Advance could yield safer, longer-range electric car batteries
UMD engineers, colleagues work to triple the energy storage of lithium-ion batteries
Wachsman and group overcome high resistance, low capacity solid-state battery barriers
A higher-energy, safer and longer-lasting zinc battery
Exploding e-Cigarettes Are a Growing Danger to Public Health

March 18, 2016


Prev   Next

Current Headlines

FPE Launches the International Fire Safety Consortium

Thin Wood Film Amplifies Speaker Technology

Dean Pines Named University of Maryland's 34th President

John Baras named Fellow of American Institute for Aeronautics and Astronautics

Alumnus Brendan Hanrahan's decade of running for medical research

UMD's Paley Wins Grant for Micromobility Study

Alumnus Andrucyk Named Director of NASA’s Goddard Space Flight Center

UMD Convenes Alliance to Accelerate Quantum ‘Ecosystem’

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar