Kofinas Awarded Patent for Flexible Batteries

Kofinas Awarded Patent for Flexible Batteries

Kofinas Awarded Patent for Flexible Batteries

Dr. Peter Kofinas
Dr. Peter Kofinas

Year after year, hundreds of product and medical device fires attributed to batteries present risks for injury or even loss of life.

That is because batteries most commonly used today in everything from electric toothbrushes to commercial aircraft are made primarily of a liquid electrolyte and containment layers. These containment layers play a critical role because the electrolyte itself is both toxic and corrosive when exposed to air. But, these containment layers add weight, cost, and mass.

Recognizing these challenges, Fischell Department of Bioengineering (BioE) Professor and Associate Dean Peter Kofinas and Department of Chemical and Biomolecular Engineering (ChBE) alumnus Ayan Ghosh (Ph.D., ChBE ’09) set out a few years ago to develop a polymer solid electrolyte that would allow engineers to create safer batteries. Because the electrolyte itself is a polymer film, batteries featuring this novel conductor do not require the use of bulky containers. This means that batteries made of this flexible solid material are lighter and smaller – which is critical when designing devices as tiny as today’s pill-sized cameras used for medical imaging.

Perhaps most importantly, the polymer film produces enough conductivity for use in small commercial products and medical devices such as pacemakers, insulin pumps, and cardiac defibrillators – but without the risk of short circuiting and fires.

Last month, Kofinas was awarded U.S. patent 9,252,456 B2 for the solid battery electrolyte, along with Ghosh. Today, Kofinas works with alumnus Arthur Von Cresce (Ph.D., MSE ’07), who is now a PI at the U.S.  Army Research Laboratory,  and students from Bioengineering, Chemical and Biomolecular Engineering, and Materials Science and Engineering to pursue the next generation in solid, flexible batteries in hopes that the technology could be used to reduce the risk of fires in electronics, automobiles, and airplanes.

Aaron Fisher (Ph.D., ChBE ’12), Ph.D. candidate Matthew Widstrom (MSE), Dr. Kang Xu (U.S. Army Research Laboratory fellow), BioE alum Mian Khalid (B.S. ’15), and undergraduates Metecan Erdi (BioE) and Brian Heligman (MSE) have also contributed to the project.

Related Articles:
New Sustainable Zinc Battery Design Could Address Future Energy Needs
Energy patents lead the way for UMCP
Chunsheng Wang Presents to U.S. Government Panel on Advances in Li-Ion Battery Technology
Building Energy Innovation in Maryland
New government partner joins UMD’s Center for Research in Extreme Batteries
ARL to Fund $30M in Equipment Innovations for Service Members
University of Maryland leads team awarded $7.2M from Army Research Lab
UMD Research Team Advances the Battery Revolution
UMD researcher receives new $1M Vehicle Technology Award
Sulfur Provides Promising 'Next-Gen' Battery Alternative

March 18, 2016


Prev   Next

Current Headlines

Prosthetics: A Better Fit

Clark School's Online Engineering Programs Nationally Ranked Top 20

Niemeier Selected for Bower Award

New Sustainable Zinc Battery Design Could Address Future Energy Needs

2023 BBI Seed Grants Inspire New Interdisciplinary Collaborations

Chang, Students Honored with Mickle Award

New algorithms for multi-robot systems in low communication situations

Energy Consortium promotes science and innovation

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar