UMD Researchers Creating First Onboard Fast-Charging System for Electric Vehicles

UMD Researchers Creating First Onboard Fast-Charging System for Electric Vehicles

UMD Researchers Creating First Onboard Fast-Charging System for Electric Vehicles

Professor Alireza Khaligh (ECE/ISR (link is external)) and his colleague in mechanical engineering, Professor Patrick McCluskey (link is external) have received a three year Grant Opportunity for Academic Liaison with Industry (GOALI) valued at $460K. Their project, "Integrated On-Board Universal SiC-based Fast Charging for Plug-In Electric Vehicles (link is external)" centers on the design of an integrated, universal on-board fast charger compatible with all charging levels.

Using level-1 and level-2 low power charging at home overnight or during the day at the office with a 120VAC or 240VAC main connection can take 4-20 hours depending on available power and battery size. Therefore, trips of significant length would involve significant planning and vehicle downtime.  The current alternative is to charge through high power level-3 off-board chargers which are bulky, costly to manufacture, expensive to install, and requires comprehensive evolution of the national charging infrastructure.

Khaligh and McCluskey are collaborating with Steven Rogers of Genovation, an electric car company in Rockville, Md. Their ultimate goal is to provide a transformative solution to overcome present limitations of the charging methods for electric vehicles which integrates different disciplines of engineering, therefore fostering interdisciplinary collaboration.

This novel and important research will:

  • lead to theoretical advancements in the design of onboard, integrated high-power chargers
  • result in innovative packaging and thermal management methods as well as physics of failure mode analyses for wide band gap based converters, leading to increased efficiency with lower size, weight, and cost
  • involve interdisciplinary research in power electronics, control, adjustable speed drives, packaging, reliability assessment, and thermal management

The research team will also ensure the highest quality integrated education and research to support the emerging workforce and educational needs of the U.S. energy and transportation industries.

Related Articles:
NSF Funds Novel Research to Create Scalable Wireless Networking, Averting Usage Crisis
Qu Wins NIST Grant
Alumnus Amr Adly Promoted to Vice President at Cairo University
Clark School Faculty Receive CAREER Awards
Fuge Receives NSF CAREER Award
Shoukry Wins NSF CAREER Award
Khaligh, McCluskey to lead new $2.37M DOE solar power converter project
Khaligh, McCluskey receive Boeing funding for more electric aircraft
Espy-Wilson Featured in MIT’s Tech Review
JaJa Connects UMD Experts with NSF South Big Data Hub Resources

September 11, 2015


Prev   Next

Current Headlines

2020 Dean's Doctoral Student Research Awards

Mohammad Hafezi Wins 2020 Simons Foundation Investigator Award

Legacy through Impact: Dr. Darryll J. Pines

UMD Team Takes a Top Spot in NASA RASC-AL Design Competition

Rapidly evolving ‘smart marble’ sensors hold promise for monitoring pharmaceutical industry bioreactors and beyond

Assistant Professor Cheng Gong Wins IUPAP Young Scientist Award

Maryland-led, Multi-institutional Research Team Receives $10M to Transform Shellfish Farming with Smart Technology

GAMMA Research Group is Developing Novel COVID-19 Prevention Robots

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar