A Longer Life for Lithium Ion Batteries

A Longer Life for Lithium Ion Batteries

A Longer Life for Lithium Ion Batteries

A scanning electron microscope (SEM) image of a cross-section of Guo and Wang's silicon scaffold anode.
A scanning electron microscope (SEM) image of a cross-section of Guo and Wang's silicon scaffold anode.

Recently published research by Department of Chemical and Biomolecular Engineering assistant professor Chunsheng Wang and postdoctoral research associate Dr. Juchen Guo describes the synthesis of a new and improved electrode composite for use in rechargeable lithium ion (Li-ion) batteries that could substantially increase their functional lifespan.

Rechargeable Li-ion batteries are used in a wide range of products and equipment, and have shown potential for use in electric vehicles. But before that can happen, Guo says, they need to be more durable and store and put out more power.

"A current challenge to developing lithium ion batteries with higher energy is replacing the current low capacity negative electrode, which is made of graphite, with a new material with a much higher capacity," he explains. "Silicon is a good candidate in terms of its capacity, which is ten times higher. However, the great shortcoming of silicon is that during the charge/discharge process, silicon particles undergo large changes in their volume as the lithium ions are inserted and extracted. This causes a lot of stress, and as a result the silicon particles will eventually be pulverized, and the battery's electrode structure will be demolished."

Most previous research on this problem focused on the nano-sized silicon particles themselves, or silicon nanowires, but improvement was limited. Guo and Wang came up with a different approach.

"The idea was to incorporate nano-size silicon particles into a 3D scaffold structure made of polymer," says Guo. "The porous structure of the scaffold can accommodate the volume change of the silicon particles, keeping the electrode intact and increasing the lifespan of the battery. Our results demonstrate a significantly improved cycle life compared to those reported in most of the previous studies."

For More Information:

Juchen Guo and Chunsheng Wang. "A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery," Chem. Commun. 2010, 46, 1428–1430 »

Visit Professor Wang's web site »

Related Articles:
UMD Engineers Discover Root Cause of Solid-State Battery Failure
ChBE PhD Candidate Wins MRS Gold Award
New Nanocomposite Anodes Speed Battery Charging
All-In-One: $300K for Development of Interface-Free Battery
Sulfur Provides Promising 'Next-Gen' Battery Alternative
UMD Researchers Design ‘Open’ Lithium-ion Battery
What’s Next for Next-Gen Batteries?
'Super Electrolyte' Capable of Operating in Extreme Temperatures, From the Arctic Tundra to the African Savannah
The Battery Revolution
Reversible Chemistry Clears Path for Safer Batteries

September 20, 2010


Prev   Next

Current Headlines

2020 Dean's Doctoral Student Research Awards

Mohammad Hafezi Wins 2020 Simons Foundation Investigator Award

Legacy through Impact: Dr. Darryll J. Pines

UMD Team Takes a Top Spot in NASA RASC-AL Design Competition

Rapidly evolving ‘smart marble’ sensors hold promise for monitoring pharmaceutical industry bioreactors and beyond

Assistant Professor Cheng Gong Wins IUPAP Young Scientist Award

Maryland-led, Multi-institutional Research Team Receives $10M to Transform Shellfish Farming with Smart Technology

GAMMA Research Group is Developing Novel COVID-19 Prevention Robots

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar