$1.5M NSF Grant for Ant-like Microrobots

$1.5M NSF Grant for Ant-like Microrobots

$1.5M NSF Grant for Ant-like Microrobots

A team of Clark School faculty from the Institute for Systems Research, electrical and computer engineering and mechanical engineering has won a three-year, $1.5 million National Science Foundation grant for "Ant-Like Microrobots—Fast, Small, and Under Control." Assistant Professor Nuno Martins (ECE/ISR) is the principal investigator. Co-PIs are Associate Professor Pamela Abshire (ECE/ISR), Associate Professor Elisabeth Smela (ME) and Assistant Professor Sarah Bergbreiter (ME/ISR).

These microrobots could be used for applications as diverse as search and rescue during disaster relief efforts, manufacturing, warehouse management, ecological monitoring, intelligence and surveillance, infrastructure and equipment monitoring, metrology and medical applications such as cell manipulation and microfactories.

No robots at the sub-cm3 scale exist because their development faces a number of open challenges. This research will identify and determine means for solving these challenges. In addition, it will provide new solutions to outstanding questions about resource-constrained algorithms, architectures and actuators that can be widely leveraged in other applications.

The team will discover new fundamental principles, design methods, and technologies for realizing distributed networks of sub-cm3, ant-sized mobile microrobots that self-organize into cooperative configurations. The scope of the project involves work in:

—Distributed algorithms for distributed coordination and formation control under severe power, communication, and mobility constraints,

—Minimal electronics hardware for robot control using event-based communication and computation, ultra-low-power radio, and adaptive analog-digital integrated circuits,

—Methods of locomotion and efficient actuators using rapid-prototyping and MEMS technologies that can operate robustly under real-world conditions,

—Integrating the algorithms, electronics, and actuators into a fleet of ant-size microrobots.

Related Articles:
The Future of Small
Barua Wins NSF Grant
NSF Grant for Hurricane Forecasting Work
Grant to Improve Data Reliability
NSF Grant for Srivastava, Narayan
NSF Grant for Ephremides
New Initiatives Push Toward Safe & Reliable Autonomous Systems
BCE Students Use Nanopore Sequencing to Connect Biology and Data Science
MATRIX-Affiliated Faculty Solving Challenges with Solutions from Nature
UMD Students Sweep 2025 VFS Student Design Competition

September 25, 2009


Prev   Next

Current Headlines

With AI’s Help, Doctors Could One Day Press ‘Print’ in the Operating Room

NSF Awards $900K to Project Enhancing Fire Investigation Training Models

Stroka Appointed Associate Chair for Undergraduate Studies and Director of Undergraduate Programs

New Oxyhalide Electrolyte Breaks Barriers for Solid-State Battery Performance

International Research Exchange Spotlight

Md Mehrab Hossen Siam Receives Graduate Endowed Fellowship

New Initiatives Push Toward Safe & Reliable Autonomous Systems

Led by Professor Mohammad Hafezi, Researchers Identify Groovy Way to Beat Diffraction Limit

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar