Sweet Named 2009 Fischell Fellow

Sweet Named 2009 Fischell Fellow

Sweet Named 2009 Fischell Fellow

The announcement of the 2009 Fischell Fellow at the third annual Fischell Festival. Left to right: Professor and Chair William Bentley, Deborah Sweet (B.S. '06, chemical engineering), and Dr. Robert E. Fischell (M.S. '53, physics). (Photo by Luisa DiPietro.)
The announcement of the 2009 Fischell Fellow at the third annual Fischell Festival. Left to right: Professor and Chair William Bentley, Deborah Sweet (B.S. '06, chemical engineering), and Dr. Robert E. Fischell (M.S. '53, physics). (Photo by Luisa DiPietro.)

Graduate Program in Bioengineering student Deborah Sweet (B.S. '06, chemical engineering) has been named the 2009 recipient of the Fischell Fellowship in Biomedical Engineering. The announcement was made April 21 at the third annual Fischell Festival by Fischell Department of Bioengineering Professor and Chair William Bentley and department benefactor and medical device inventor Dr. Robert E. Fischell.

The fellowship is a unique opportunity for talented and innovative graduate students interested in applied research and product design in the biomedical industry. It features a $35,000 12-month stipend, full tuition waiver and full health benefits, and is renewable for up to five years.

Sweet is co-advised by Graduate Program in Bioengineering affiliate faculty members Professor Hamid Ghandehari (Department of Bioengineering, University of Utah) and Professor Peter Swaan (Department of Pharmaceutical Sciences and Center for Nanomedicine & Cellular Delivery, University of Maryland School of Pharmacy).

Sweet's winning proposal, "Anionic PAMAM Dendrimers for Oral Delivery of 5-Fluorouracil," describes how her proposed startup company, DendriPharm Systems, would develop an oral drug delivery system for chemotherapy drugs that are traditionally administered intravenously.

Dendrimers—nano-sized, highly branched polymers with defined, controllable structures—will serve as the drugs' base carrier. A dendrimer in a "starburst" configuration provides a large number of terminal groups, like a dense group of twigs at the end of a branch, to which not only therapeutics but also targeting and imaging agents can be attached. Dendrimers are capable of crossing biological barriers in the digestive tract and heading out into the rest of the body, taking their chemotherapy cargo with them. Many chemotherapy drugs are incapable of crossing these barriers on their own, which is why they must be delivered intravenously.

The advantage of using dendrimers as oral drug carriers, Sweet explains, benefits both the patient and the hospital. "A cancer patient could take pills to treat their cancer rather than sit for hours in the hospital receiving intravenous treatments," she says. "The regimen could be more flexible and even include at-home administration. This dramatically reduces treatment costs and lost time at work, and dramatically improves the quality of life for the patient."

Learn more about the Fellowship and current and past Fellows »

Related Articles:
Maisel to Investigate Little-Known Organ in the Body
Duncan Earns NSF Career Award to Advance Gene Therapy
New features on ingestible capsule will deliver targeted drugs to better treat IBD, Crohn’s disease
Unveiling Nanoparticle Transport: Transforming Drug Delivery
Clark School Research Nominated for “Invention of the Year”
Ingestible Capsule Technology Research on Front Cover of Journal
Gut Health Monitoring Gas Sensors Added to Ingestible Capsule Technology
UMD Researchers Pioneer Improved Photoimmunotherapy Treatment Against Metastatic Cancer
UMD Bioengineers’ Brillouin Microscopy Among The Guardian’s Top 10 Science Stories for 2022
Dropping an anchor for better GI tract disease treatment

April 24, 2009


Prev   Next

Current Headlines

Event Aims to Construct an Interest in STEM

Reporters Brave Hurricane-Force Winds

ECE Welcomes Dr. Saikat Guha

Jensen Hughes Awards $5,000 To Undergraduates in Entrepreneurship Course

Applications Open for Professor and Chair of UMD's Department of Materials Science and Engineering

UROC Interns Explore Counter UAS, VTOL

University of Maryland Team Advances to Semifinals in XPRIZE Wildfire Competition

MEI2 seed grant receives BETO SBIR Funding

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar