Engineers' Work Could Leave Golfers Smiling

Engineers' Work Could Leave Golfers Smiling

Engineers' Work Could Leave Golfers Smiling

Computer simulation of air flow around a golf ball.
Computer simulation of air flow around a golf ball.

Bioengineering associate professor Elias Balaras and his graduate student Nikolaos Beratlis, along with researchers at the University of Arizona, are using supercomputing power to study the aerodynamics of golf balls, specifically golf ball dimples, according to the American Institute of Physics.

Their results were reported at the 61st Meeting of the American Physical Society's Division of Fluid Dynamics last month.

The team modeled the movement of a golf ball through the air with the highest level of detail ever. This could allow for better design of golf ball dimples, which contribute to the balls' aerodynamics.

Balaras and Beratlis created software for processing equations for the project on parallel supercomputers. This allowed the researchers to perform computations much faster than would have been possible on regular computers.

The researchers' work has received wide coverage in the media, including in the New York Times, among other publications.

December 3, 2008


Prev   Next

Current Headlines

Two Clark School Faculty Elected to National Academy of Inventors

Small Business Connections Help Meet Researcher Needs

Prof. Michael Pecht Explores Energy Storage Collaboration at Saudi University

Professor Bongtae Han Delivers Invited Talk at Korean Semiconductor Event

Two Students Take Top Awards at AIAA YPSE Conference

Chemical Engineering Student Wins Third Place Award in AIChE’s Student Poster Competition

UMD Engineering & HII Partner to Accelerate Defense Technologies

Tian Honored with Oral Presentation Award at MicroTAS 2025

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar