$1.2M in NSF Funding Supports Research to Develop New Water and Ice Sensors

$1.2M in NSF Funding Supports Research to Develop New Water and Ice Sensors

$1.2M in NSF Funding Supports Research to Develop New Water and Ice Sensors

A UMD engineering researcher is working to enable cost-effective, year-round environmental measurements of ice melt and growth and water quality with advanced sensing technology. Photo by iStock.
A UMD engineering researcher is working to enable cost-effective, year-round environmental measurements of ice melt and growth and water quality with advanced sensing technology. Photo by iStock.

By Rebecca Copeland and Robert Herschbach for Maryland Today

A University of Maryland researcher is leading a pair of new National Science Foundation (NSF)-funded projects to deploy advanced sensors to better understand how climate change is affecting ice—and the water quality beneath—near the poles and elsewhere.

Miao Yu, a professor of mechanical engineering, is working to enable measurements key to climate change and water-quality studies, but which are hard to gather on a year-round basis because of the expense of installing and maintaining current monitoring instruments, and the difficulty of measuring water quality beneath ice.

Like much of her work, Yu’s new projects are united by theme of devising innovative sensing technologies to solve environmental sustainability problems.

“My efforts are centered around how we can enhance our understanding of ecosystems and how they contribute to climate change in the long term,” Yu said.

She is the principal investigator for a $689,000 NSF grant announced last month that will fund a four-year project to use acoustic sensing to accurately measure ice growth and melt rates in lakes and polar regions, then generate better prediction models of how ice and water circulate and mix. She’ll work with scientists from Rutgers University, the NSF Bigelow Laboratory for Ocean Sciences and the University of California, Davis.

Yu also will lead a $500,000 NSF project using fiber optic sensing to advance cost-effective, long-term water quality monitoring in lakes and lake systems. It will be able to simultaneously measure carbon dioxide, methane, temperature, pH, salinity and dissolved oxygen—the significant components of measuring a lake’s health.

[The Modern Battle for Maryland’s Oysters]

Since 2020, Yu has been leading a $10 million U.S. Department of Agriculture National Institute of Food and Agriculture project to revolutionize outdated and environmentally destructive aquaculture practices with robotics, autonomy and artificial intelligence. The multi-institutional and interdisciplinary project promises to revitalize the industry by making it easier to pinpoint market-sized shellfish.

Related Articles:
Maryland Engineering and Partners Win $26M to Develop Better HVACR Systems and Fight Climate Change
ChBE Professors Taylor Woehl and Chen Zhang Receive NSF CAREER Award
Groth Wins NSF CAREER Award
The Future of Small
Cumings, Seog Win NSF CAREER Awards for Nanotech
Ulukus Wins $1.1M Wireless Security Grant
Synchronized Swimming for Submarines
Paley Wins NSF CAREER Award
Ulukus Awarded National Science Foundation Grant
Sunderland Wins CAREER Award

September 8, 2023


Prev   Next

Current Headlines

Glowing ‘Gem of the University’ Observed Its 50th Anniversary

Saetti Recognized with ACGSC 2024 Dave Ward Memorial Lecture Award

UMD Part of $10 Million DOE Hydrogen Grant

Aerospace Undergrad Takes First in SAMPE Regional Poster Competition

UMD Among 15 Institutions Supported by $62.5 Million Grant To Transform Electric Grids

Search Open for Full-Time Faculty Position in Space Exploration

Robert E. Fischell Institute for Biomedical Devices invests $200K in the future of biomedical devices, cultivating up-and-coming investigators and immersing them in successful multidisciplinary teams

Inspired by Nature, Researchers Improve System Movement

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar