Hu Develops Eco-Friendly Process for Natural Bamboo Composite

Hu Develops Eco-Friendly Process for Natural Bamboo Composite

Hu Develops Eco-Friendly Process for Natural Bamboo Composite

Sample in-situ glued-bamboo (glubam) composite.
Sample in-situ glued-bamboo (glubam) composite.

Researchers at the Department of Materials Science and Engineering (MSE) developed a new cost-effective bio-adhesion strategy that can process natural bamboo to composites without the use of petroleum-derived synthetic adhesives, speeding up the process for a larger-scale composite operation that can be used in structural engineering applications. 

Bamboo composite is an attractive candidate for structural applications in the construction, logistics and automotive industries, but the use of petroleum-derived synthetic adhesives or low-bonding bio-based adhesives has slowed down its widespread usage. 

That's why University of Maryland Distinguished Professor Dr. Liangbing Hu developed a novel bio-adhesion technique based on in-situ lignin bonding, which has the capacity to process natural bamboo into a scalable, high-performance composite named “in-situ glued bamboo” (glubam). 

"This is the first demonstration that in-situ generated lignin has the right chemistry and morphological arrangement to bond the bamboo pieces together toward a structural material. This concept can then be extended to wood," said Dr. Hu. 

Compared with petrochemical-based adhesives, the in-situ lignin adhesion strategy is cost-effective, eco-friendly and has no harmful emissions. This work demonstrates a practical approach for making sustainable large-scale bamboo composites for structural engineering applications that could provide a significant decarbonization impact and promote sustainable forestry practices.

This new development was a collaboration between Dr. Hu and University of Wisconsin-Madison Professor Xuejun Pan

In this technique, lignin connects the cellulose fibrils into a network via a strong adhesive interface formed by hydrogen bonding and nanoscale entanglement, which results in the processing of in situ glubam, presenting shear strength of 4.4 Megapascals (MPa), and a tensile strength of 300 MPa. 

Additional information can be found in Nano Letters, 2023, DOI: https://pubs.acs.org/doi/10.1021/acs.nanolett.3c01497

September 12, 2023


Prev   Next

Current Headlines

Taking a Shot at Success: Dean's Circle Spotlight

CEEE Welcomes Assistant Research Scientist Sunil Kumar

Jewell Research Lab’s Novel Autoimmune Disease Research Published in Three Top Journals

Wachsman named Materials Research Society Fellow

International Expert in Fire Protection Engineering Visits the University of Maryland

Advancing Health Care for the Public Good

Clark Foundation Invests $51.7M to Support Engineering Scholarships, Programming

Dr. Eric Wachsman selected to serve on the Comptroller's Climate Advisory Council

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar