Alum Naomi Leonard is 2023 IEEE Control Systems Award recipient

Alum Naomi Leonard is 2023 IEEE Control Systems Award recipient

Alum Naomi Leonard is 2023 IEEE Control Systems Award recipient


Aluma Naomi Ehrich Leonard (EE Ph.D. 1994) is the recipient of the 2023 IEEE Control Systems Award “for contributions to applications and theory for control of nonlinear and multiagent systems.”

The IEEE Control Systems Award, established in 1980, is given for outstanding contributions to control systems engineering, science, or technology. Criteria include the seminal nature of the contribution, singular achievement, practical impact, breadth of contributions, depth of contributions, historical precedence, and quality of the nomination.

Leonard is the Edwin S. Wilsey Professor of Mechanical and Aerospace Engineering at Princeton University. Leonard is a MacArthur Fellow, a member of the American Academy of Arts and Sciences, and a Fellow of the ASME, IEEE, IFAC, and SIAM. She previously won the IEEE Control Systems Society's 2017 Hendrik W. Bode Lecture Prize. In 2015, the A. James Clark School of Engineering honored Leonard for her research in the field cooperative control of autonomous vehicles by inducting her into the college’s Innovation Hall of Fame.

At Maryland, Leonard was advised by Professor P. S. Krishnaprasad (ECE/ISR), himself a winner of the IEEE Hendrik W. Bode Lecture Prize.

Leonard was among the first to investigate the simple rules that enable individual agents—whether living organisms or robotic vehicles—to work together in groups by coordinating decision-making, sensing, and motion. In her early work, through the forces of attraction, repulsion and alignment, the agent's responsive rules achieved the desired moving group formation. The group can climb gradients, track level sets in the sampled field, and realize motion patterns that maximize information in sensor measurements when the agents are responding to the environment.

Leonard applied her work to help explain the behaviors observed in animal groups and to design the decision-making behaviors of networks of autonomous vehicles in missions that include environmental monitoring and exploration. She led a multidisciplinary team in an effort to develop adaptive and sustainable ocean observing systems using the coordinated motion of a fleet of autonomous underwater gliders. A month-long field experiment, in Monterey Bay, Calif., provided an unprecedented data set and demonstrated the enormous potential of coordinated control of autonomous vehicles.

Her experiments have produced myriad new theoretical investigations by a large community of academic researchers in engineering, mathematics, physics, and biology on topics ranging from geometric mechanics and control to social decision-making dynamics. She is also inspiring investigation at the intersection of engineering and art, as co-creator of Flock Logic, an art-making project that explores what happens when dancers carry out the rules used to model flocking birds.

Related Articles:
Alum Shinkyu Park wins 2022 O. Hugo Schuck Award
Rachel Suitor aboard NGS/NOAA expedition in Gulf of Mexico
UMD Takes Second in VFS Design-Build-Vertical-Flight Competition
UMD, UMBC, ARL Announce Cooperative Agreement to Accelerate AI, Autonomy in Complex Environments
‘Smellicopter’ drone uses live moth antenna to seek smells, avoid obstacles
New hazard mitigation software moves UAVs closer to National Airspace System integration
Alumna Naomi Leonard wins Hendrik W. Bode Lecture Prize
Oh, the logistics!
UMD Team Wins Inaugural NIST UAS 3.1: FastFind Challenge
MRC and MAGE Earn ARM Institute Endorsement

July 7, 2022


Prev   Next

Current Headlines

Do Suddenly Self-Centered Brain Cells Promote Disease?

UMD Researchers: DART Probe an Initial Step in Planetary Defense

Energy patents lead the way for UMCP

Introducing the Early Career Distinguished Alumni Society

UMD Research Sheds Light on Gender Imbalance in Construction

Chunsheng Wang Presents to U.S. Government Panel on Advances in Li-Ion Battery Technology

Compact Electron Accelerator Reaches New Speeds with Nothing But Light

UMD Undergraduate Team Wins VFS Competition

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar