UMD Research Group creates superior water-based battery chemistry

UMD Research Group creates superior water-based battery chemistry

UMD Research Group creates superior water-based battery chemistry

Electrochemical performances of 2.5 V LiMn2O4 || Li4Ti5O12 pouch cells.
Electrochemical performances of 2.5 V LiMn2O4 || Li4Ti5O12 pouch cells.

Looking to design next-gen aqueous electrolytes, beyond water in salt (WIS), while enhancing efficiency, stability and reducing cost, aqueous electrolytes with a lower salt concentration of 5.0 m (mol/kg) and wider electrochemical stability window of > 3.0 V are highly needed – and a research team at the University of Maryland (UMD) can provide that.

The team, led by Chunsheng Wang – a professor in the UMD Department of Chemical and Biomolecular Engineering (ChBE) – reports in Nature Energy a non-flammable, ternary eutectic (e.g., mixing of three components) electrolyte that fulfills all the requirements. Jijian Xu, a ChBE Postdoctoral Researcher, served as the first author of the study.

“We developed a next-generation aqueous electrolyte by reducing the salt concentration from 21m in ‘water-in-salt’ to 4.5m, while further extending the electrochemical stability window to 3.3V,” said Wang. “This electrolyte enables a 2.5V LiMn2O4 || Li4Ti5O12 pouch cell with practical settings, which is a big step towards commercial applications.”

By mixing three eutectic components – LiTFSI, CO(NH2)2, and H2O, together with KOH as an additive, in this case – the team designed a robust, 4.5m water-based electrolyte, which expanded the electrochemical stability window to 3.3V with the cathodic limiting potential to 1.5 V.

“This electrolyte can reduce the number of H2O in a Li+ solvation shell to 0.7 – the reduction of LiTFSI and CO(NH2)2 under KOH catalyst formed a robust LiF/polymer bilayer SEI,” said Xu. “Moreover, Li-rich Li1.5Mn2O4 is used as a lithium reservoir, which compensates for the Li-loss in the anode. Ultimately, we can achieve stable cycling with high Coulombic efficiency.”

This battery chemistry – in addition to superior performance – is safe/non-flammable, low cost, and environmentally friendly, thus paving the way for the use of aqueous lithium-ion batteries in everyday applications.

AquaLith Advanced Materials, a Maryland-based materials company, has licensed water-in-salt electrolyte battery technology for commercialization. The U.S. Department of Energy (DOE) has also invested $5M to development of water-in-salt electrolyte batteries. 

For additional information:

Xu, J., Wang, C., et al. (2022). Aqueous electrolyte design for super-stable 2.5 V LiMn2O4 || Li4Ti5O12 pouch cells, Nature Energy. DOI: 10.1038/s41560-021-00977-5


February 7, 2022

Prev   Next

Current Headlines

UMD Celebrates Grand Opening of Quantum Computing Research Hub

Ashwani Gupta Named Royal Academy of Engineering Fellow

Thomas Antonsen Honored by the American Physical Society

Maryland Engineering Ranks Among the Nation’s Top 20 Undergraduate Engineering Programs

A “Lint Roller” for Moon Dust

Celebrating Hispanic/Latinx Aerospace Engineers: Oliver Ortiz

UMD’s Gabriel Models Liberalized Energy Markets in Brazil

UMD's 40th Annual Convocation Honors Engineering Staff, Faculty

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar