UMD Engineers Help Pioneer New Treatment for Respiratory Failure

UMD Engineers Help Pioneer New Treatment for Respiratory Failure

UMD Engineers Help Pioneer New Treatment for Respiratory Failure

A photo of Dr. Hosam FathyTreating patients with severely compromised lung functions presents a cruel dilemma: although such patients need a mechanical ventilator to help them breathe, the ventilator itself can also cause lung injury, compounding the problem.

A team of UMD engineers, in collaboration with University of Maryland Medical System (UMMS) surgeon Joseph S. Friedberg, has been working to develop an alternative. By circulating oxygenated perfluorocarbon through a patient’s abdominal cavity, doctors can in effect create a “third lung.”

“The idea is to pump an oxygen-rich liquid into the cavity and then rely on the oxygen’s diffusion into the patient’s blood vessels, along with the diffusion of carbon dioxide out of the blood vessels,” explains UMD mechanical engineering professor Hosam Fathy.

A photo of Dr. Jin-Oh HahnHe and fellow UMD professors Jin-Oh Hahn (mechanical engineering, Fischell Institute for Biomedical Devices) and Miao Yu (mechanical engineering, Institute for Systems Research) are handling the engineering aspects of an idea first conceived by Friedberg, who is Charles Reid Edward Professor of Surgery at the University of Maryland School of Medicine (UMSOM) and Thoracic Surgeon-in-Chief at UMMS. With help from a National Science Foundation (NSF) EAGER grant, they conducted preliminary research that demonstrated the efficacy of the approach.

Now, the NSF has awarded the multi-institutional team a new collaborative, Growing Convergence Research (GCR) grant, totaling $3.6 million, to perfect the "third lung."  GCR was identified as one of 10 Big Ideas by the NSF, which serves as a means for solving vexing research problems, in particular, complex problems focusing on societal needs.

A photo of Dr. Miao Yu"The concept is Friedberg’s, and he’d already successfully demonstrated it before coming to us,” Fathy said. ”But we can improve it in ways that make it more feasible medically as well as more cost-effective.”

Among other contributions, the UMD engineers are devising ways to control pressures, temperatures, and flow rates more precisely, and creating a sophisticated data acquisition system that can track the entire process. Fathy’s colleague Yu is developing sensors that can accurately measure dissolved concentrations of gases. Fathy and Hahn, meanwhile, are working on control algorithms for the system.

Although the team has been spurred by the need to help save lives during the pandemic, their research has much broader applicability, according to Friedberg. “Long term, we believe this technology could find a standard role in the treatment of any patient with recoverable lung injury from any cause,” he said.

Earlier this year, two members of the project team, Hahn and Friedberg, were selected as mentors for a Fischell Institute Young Investigator Fellowship supporting the team’s work on the project. Through the fellowship program, Hahn and Friedberg are mentoring two young investigators, Hyun-Tae Kim and Joshua Leibowitz. Kim is focusing on PFC gas concentration sensor development while Leibowitz studies ways to optimize the Third Lung technology.

Photos, from top: Dr. Hosam Fathy, Dr. Jin-Oh Hahn, Dr. Miao Yu



Related Articles:
Lex Schultheis Named a Winner of the NIOSH Respirator Fit Evaluation Challenge
Safe Storage
Gaining an Edge on Infectious Diseases
Wall Street Journal Cites MTI Research
Working Together to Show COVID's Impact on Communities of Color
UMD Research Sheds Light on Holiday Travel and COVID
'Perfect adherence' to COVID vaccine prioritization hampering distribution says Mike Ball
A Tech Rx for COVID Recovery at Home
Striking Up the Band Again—Safely
UMD developing COVID-19 decision making tools for colleges

September 29, 2021


Prev   Next

Current Headlines

Glowing ‘Gem of the University’ Observed Its 50th Anniversary

Saetti Recognized with ACGSC 2024 Dave Ward Memorial Lecture Award

UMD Part of $10 Million DOE Hydrogen Grant

Aerospace Undergrad Takes First in SAMPE Regional Poster Competition

UMD Among 15 Institutions Supported by $62.5 Million Grant To Transform Electric Grids

Search Open for Full-Time Faculty Position in Space Exploration

Robert E. Fischell Institute for Biomedical Devices invests $200K in the future of biomedical devices, cultivating up-and-coming investigators and immersing them in successful multidisciplinary teams

Inspired by Nature, Researchers Improve System Movement

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar