Sulfur Provides Promising 'Next-Gen' Battery Alternative

Sulfur Provides Promising 'Next-Gen' Battery Alternative

Sulfur Provides Promising 'Next-Gen' Battery Alternative

Image: A schematic illustration of the formation of chemical bonding stabilized carbon-small sulfur composite (provided by C. Luo).
Image: A schematic illustration of the formation of chemical bonding stabilized carbon-small sulfur composite (provided by C. Luo).

With the increasing demand for sustainable and affordable energy, the ongoing development of batteries with a high energy density is vital. Lithium-sulfur batteries have attracted the attention of academic researchers and industry professionals alike due to their high energy density, low cost, abundance, nontoxicity and sustainability. However, Li-sulfur batteries tend to have poor cycle life and low energy density due to the low conductivity of sulfur and dissolution of lithium polysulfide intermediates in the electrolytes, which are generated when pure sulfur reacts with Li-ions and electrons.  

To circumvent these challenges, a multi-institutional research team led by Chunsheng Wang at the University of Maryland has developed a new chemistry for a sulfur cathode, which offers increased stability and higher energy of Li-sulfur batteries. Chao Luo - an assistant professor of chemistry and biochemistry at George Mason University - served as first author on the study, published in the Proceedings of the National Academy of Sciences (PNAS) on June 15.

Numerous conductive materials such as graphene, carbon nanotube, porous carbon and expanded graphite were used to prevent the dissolution of polysulfides and increase the electrical conductivity of sulfur cathodes - the challenge here is encapsulating the nano-scale sulfur in a conductive carbon matrix with a high sulfur content to avoid the formation of polysulfides.

"We used the chemical bonding between sulfur and oxygen/carbon to stabilize the sulfur," Luo said. "This included a high temperature treatment to vaporize the 'pristine' sulfur and carbonize the oxygen-rich organic compound in a vacuum glass tube to form a dense oxygen-stabilized sulfur/carbon composite with a high sulfur content."

In addition, scanning electron microscope (SEM) and transmission electron microscopy (TEM) instruments, X-ray photoelectron spectroscopy (XPS) and pair distribution function (PDF) were used to illustrate the reaction mechanism of the electrodes.

"In the dense S/C composite materials, the stabilized sulfur is uniformly distributed in carbon at the molecular level with a 60% sulfur content," Wang said. "The formation of solid electrolyte interphase during the activation cycles completely seal the sulfur in a carbon matrix, offering superior electrochemical performance under lean electrolyte conditions."

Li-sulfur batteries have applications in household and handheld electronics, electric vehicles, large scale energy storage devices and beyond.

For additional information:

Luo, C. et al. (15 June 2020). A chemically stabilized sulfur cathode for lean electrolyte lithium sulfur batteries. PNAS. DOI: 10.1073/pnas.2006301117

Related Articles:
Next-Generation Batteries Could Come with Lower Production Costs, Less Environmental Impact
Maryland Researchers Awarded $1.5 Million to Pioneer Batteries for Electric Rail and Maritime Transportation
Wang Develops New Battery Technology That Could Lead to Safer, High-Energy Electric Vehicles
Battery Recycling
New Sustainable Zinc Battery Design Could Address Future Energy Needs
Chunsheng Wang Presents to U.S. Government Panel on Advances in Li-Ion Battery Technology
Maryland Engineers Get Cracking on Sustainability with Crab Shell-based Battery
Building Energy Innovation in Maryland
New government partner joins UMD’s Center for Research in Extreme Batteries
ARL to Fund $30M in Equipment Innovations for Service Members

June 15, 2020


Prev   Next

Current Headlines

Applications Open for Professor and Chair of UMD's Department of Materials Science and Engineering

University of Maryland Team Advances to Semifinals in XPRIZE Wildfire Competition

MEI2 seed grant receives BETO SBIR Funding

CEEE Team Takes High Schoolers on a “Moon Mission”

New Tool Predicts Rogue Waves Up to Five Minutes in Advance

Ghodssi Honored With Gaede-Langmuir Award

Shellfish Waste Engineered to Preserve Produce for Healthier, Longer Shelf Life

An Insider’s Look at UMD’s Research on Eco-Friendly HVAC&R

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar