UMD Researchers Discover Nanoparticle-Like Behavior of a Liquid Drop Acts Like Velcro on Specially Designed Surfaces

UMD Researchers Discover Nanoparticle-Like Behavior of a Liquid Drop Acts Like Velcro on Specially Designed Surfaces

UMD Researchers Discover Nanoparticle-Like Behavior of a Liquid Drop Acts Like Velcro on Specially Designed Surfaces

Mechanical Engineering Associate Professor Siddhartha Das, along with several present and former graduate students have published new findings on liquid drops behaving like a solid object during wetting interactions on a specially designed surface in the new Cell Press journal Matter. This new research demonstrates nanoparticle-like behavior for a nanoscopic liquid drop. Das’ current Ph.D. students Parth, Yanbin, Harnoor, and Haoyuan and former Ph.D. student Shayandev are the co-authors on this study.  

Understanding the behavior of a liquid drop on a soft surfaces, like a gel surface, is critical for improving a large number of applications from designing anti-fog surfaces and measurement techniques for characterizing soft surfaces to providing alternative treatment options for cancer patients that involve preventing the spread of cancer cells on soft tissues.

This is the first time a study looked at the behavior of a liquid drop on a surface that is both soft enough to be deformed by a liquid drop and phobic, or repulsive to the liquid drop, by employing a detailed molecular-level simulation approach (Fig. 1, top and middle row).

The researchers found the results surprising in that the liquid drop behaves like a solid object, remaining un-deformed on the soft surface, or more specifically like a solid nanoparticle (see Fig. 1, bottom row) since the drop is nanoscopic in size. Accordingly, the drop exhibits an adhesion response that very closely obeys the Johnson-Kendall-Roberts (JKR) Law characterizing solid nanoparticle adhesion on a soft surface.

According to the researchers, the second important discovery of their work established that they could create an almost Velcro-like effect to adhere a liquid drop onto an extremely phobic surface by increasing the “softness” of that surface (Fig. 1, top row). Das and his students established that the energy lost due to the deformation of the sufficiently “soft surface” ensures that the drop does not have the energy to leave the surface.   

Figure 1: (Top and middle row): Simulation snapshots depicting the drop motion on a substrate that is simultaneously soft and phobic (such a substrate has been computationally designed by considering a layer of grafted polymer molecules whose stiffness (κb) can be varied and which is highly repelling to the drop). For soft-enough substrates (i.e., surfaces grafted polymer molecules with low enough κb) the drop retains its contact with the substrate despite the latter being highly repelling (please see the top row). On the other hand, for less soft surfaces (i.e., surfaces grafted polymer molecules with large enough κb), the drop loses contact with the substrate (please see the middle row).
(Bottom row): Schematic depicting the equivalence of the drop and the nanoparticle.

“There are numerous applications where one might want a liquid-repelling surface with local patches where drop adhesion is favored,” explains Das. “For example, a liquid-repelling surface with locally adhesive patches allows local manipulation and merging of liquid drops. This behavior could be useful for a variety of applications from the fabrication of biodegradable microgels and better drop-wise additive manufacturing, to micromixing that allows biological analysis where sample sizes are miniscule or for performing chemical reactions with greatly reduced volumes of reagents, hence greatly reducing waste.”

In addition, there are many applications where liquid drops can be sustained for a long time without distortion, for example, the drops behave like liquid marble. Such applications include transporting miniscule microscale volumes of liquid without leakage, serving as microbioreactors involving human blood, fabricating bioreactors for harvesting microorganisms, mixing reagents by merging two non-deforming liquid marbles.

“The research our team has demonstrated here, where such local adhesion is ensured by controlling the softness of the substrate and at the same time demonstrating that the drop behaves like a solid particle or a liquid marble, can be potentially useful across a wide-ranging variety of applications,” said Das.

P. R. Desai, Y. Wang, H. S. Sachar, H. Jing, S. Sinha, and S. Das “Supersolvophobic Soft Wetting: Nanoscale Elastocapillarity, Adhesion, and Retention of a Drop Behaving as a Nanoparticle”, Matter. (DOI: 10.1016/j.matt.2019.07.001)

 

 

Related Articles:
Barua Wins NSF Grant
Six Clark School Faculty Receive 2024 DURIP Awards
"Rare but Devastating": Maisel Honored for Immunotherapy Research to Treat Deadly Lung Disease in Women
UMD Researchers Pioneer Improved Photoimmunotherapy Treatment Against Metastatic Cancer
UMD Celebrates Grand Opening of Quantum Computing Research Hub
Erika Moore Receives NSF CAREER Award
Maryland Engineers Awarded Grants to Address Humanity's Grand Challenges
Big Ten Network spotlights Maryland Engineering
In the News: Maryland Engineers Advance Holiday Safety, Fire Data Research
Bringing Health Care’s Vision of Tomorrow into Focus

September 6, 2019


Prev   Next

Current Headlines

Three UMD Students Receive SAMPE Leadership Awards

International Energy Cooperation Center Established at University of Maryland

Maryland Researchers Awarded $1.5 Million to Pioneer Batteries for Electric Rail and Maritime Transportation

Researcher’s Pacific Dive Spurred Innovations in Robotics with Machine Intelligence to Create Biodegradable Plastic Substitutes

UMD Professor and Alum Among 2024 VFS Awardees

Agents of Positive Change: Highlighting Women Maryland Engineers

Celebrating Women in Aerospace Engineering: Christine Hartzell

Batteries, Building Efficiency, and More: Innovating in Energy

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar