3D-printed Tissues May Keep Athletes in Action

3D-printed Tissues May Keep Athletes in Action

3D-printed Tissues May Keep Athletes in Action

Rice University graduate student Sean Bittner holds a sample of a 3D-printed scaffold that may someday help heal osteochondral injuries of the kind often suffered by athletes. The material mimics the gradient structure of cartilage to bone found at the end of long bones. Photo by Jeff Fitlow
Rice University graduate student Sean Bittner holds a sample of a 3D-printed scaffold that may someday help heal osteochondral injuries of the kind often suffered by athletes. The material mimics the gradient structure of cartilage to bone found at the end of long bones. Photo by Jeff Fitlow

Bioscientists are moving closer to 3D-printed artificial tissues to help heal bone and cartilage typically damaged in sports-related injuries to knees, ankles and elbows.

At the Center for Engineering Complex Tissues (CECT), a National Institutes of Health center at the University of Maryland (UMD), Rice University, and the Wake Forest School of Medicine, scientists reported their first success at engineering scaffolds that replicate the physical characteristics of osteochondral tissue – basically, hard bone beneath a compressible layer of cartilage that appears as the smooth surface on the ends of long bones. UMD Fischell Department of Bioengineering Fischell Family Distinguished Professor and chair John Fisher directs CECT.

Injuries to these bones, from small cracks to pieces that break off, can be painful and often stop athletes’ careers in their tracks. Osteochondral injuries can also lead to disabling arthritis.

The gradient nature of cartilage-into-bone and its porosity have made it difficult to reproduce in the lab, but Rice scientists led by bioengineer Antonios Mikos and graduate student Sean Bittner have used 3D printing to fabricate what they believe will eventually be a suitable material for implantation.

Their results are reported in Acta Biomaterialia.

“Athletes are disproportionately affected by these injuries, but they can affect everybody,” said Bittner, a third-year bioengineering graduate student at Rice, a National Science Foundation fellow and lead author of the paper. “I think this will be a powerful tool to help people with common sports injuries.”

The key is mimicking tissue that turns gradually from cartilage (chondral tissue) at the surface to bone (osteo) underneath. The Biomaterials Lab at Rice printed a scaffold with custom mixtures of a polymer for the former and a ceramic for the latter with imbedded pores that would allow the patient’s own cells and blood vessels to infiltrate the implant, eventually allowing it to become part of the natural bone and cartilage.

“For the most part, the composition will be the same from patient to patient,” Bittner said. “There’s porosity included so vasculature can grow in from the native bone. We don’t have to fabricate the blood vessels ourselves.”

The future of the project will involve figuring out how to print an osteochondral implant that perfectly fits the patient and allows the porous implant to grow into and knit with the bone and cartilage.

Mikos said the collaboration is a great early success for CECT, which works to develop bioprinting tools to address basic scientific questions and translate new knowledge into clinical practice.

“In that context, what we’ve done here is impactful and may lead to new regenerative medicine solutions,” Mikos said.

Co-authors of the paper are Rice graduate student Brandon Smith, postdoctoral researcher Luis Diaz-Gomez, undergraduate Carrigan Hudgins, Anthony Melchiorri, University of Maryland Fischell Department of Bioengineering alum and associate director of the Biomaterials Lab at Rice, and David Scott, the Noah Harding Professor of Statistics; and John Fisher, CECT director and Fischell Family Distinguished Professor and chair of the University of Maryland’s Fischell Department of Bioengineering. Mikos is the Louis Calder Professor of Bioengineering and a professor of chemical and biomolecular engineering, of chemistry and of materials science and nanoengineering.

The National Institutes of Health and the RegenMed Development Organization supported the research.

Related Articles:
4D Bioprinting Smart Constructs for the Heart
Engineering Solutions for Burn Wounds
Fisher Named Tissue Engineering Co-Editor-in-Chief
Fisher, Bracaglia Weigh in on the Future of Regenerative Medicine
Barua Wins NSF Grant
Catherine K. Kuo Named President-Elect of TERMIS Americas Chapter
Six Clark School Faculty Receive 2024 DURIP Awards
"Rare but Devastating": Maisel Honored for Immunotherapy Research to Treat Deadly Lung Disease in Women
UMD Researchers Pioneer Improved Photoimmunotherapy Treatment Against Metastatic Cancer
UMD Celebrates Grand Opening of Quantum Computing Research Hub

April 1, 2019


Prev   Next

Current Headlines

Engineering Students Fabricate Tomorrow’s Solutions Today

Alum Returns to Fire Protection Engineering as New Online Program Director

Erika Moore Named a 2024 TED Fellow

ECE Ph.D. Student Wins UMD 3MT Competition

UMD Team Advances in NIST UAS 5.0 Competition, Wins Three Best in Class Awards

In Soft Robotics, Instability Can Be a Plus

When Vision Fails, a Suit Could Steer Pilots to Safety

JC Zhao Named Dean of University of Connecticut College of Engineering

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar